

RECALIBRATION DUE DATE:

January 24, 2019

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	January 24, 2018 Rootsmet				: 438320 Ta: 293			°К
Operator:	Jim Tisch					Pa:	756.9	mm Hg
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3166			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ]
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4430	3.2	2.00	1
	2	3	4	1	1.0270	6.4	4.00	1
	3	5	6	1	0.9220	7.9		
	4	7	8	1	0.8780	8.7		
	5	9	10	1	0.7270	12.6	8.00	
			C	ata Tabula	ition]
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	1.0087	0.6990	1.423	33	0.9958	0.6901	0.8799	
	1.0044	0.9780	2.0129		0.9915	0.9655	1.2443	
	1.0024	1.0872	2.250	The second se	0.9896	1.0733	1.3912	
	1.0013	1.1404	2.360		0.9885	1.1259	1.4591	
	0.9961	1.3701	2.846		0.9834	1.3526	1.7598	
		m=	2.122	THE OWNER OF THE OWNER		m=	1.32895	
	QSTD	b=	-0.060		QA	b=	-0.03719	
		r=	0.999	99		r=	0.99999	
	L	1		Calculatio		ΔVol((Pa-Δl		
			/Pstd)(Tstd/Ta)				
	Qstd=	Vstd/∆Time						
		11	For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((√∆H(·	Pa <u>(Tstd</u> Pstd Ta)-b)	Qa=	1/m ((√∆F	н(Та/Ра))-b)	
	Standard	Conditions						
Tstd:	298.15			1		RECA	LIBRATION	
Pstd:	and the second se	mm Hg					1 11	
All calibrate	and the second se	ey er roading (in	1120)				nnual recalibratio	
		er reading (in eter reading (Regulations Part 5	Contraction of the Second
and the second se		perature (°K)					, Reference Meth	
		essure (mm l	Hg)				ended Particulate	
o: intercept					the	e Atmosphe	ere, 9.2.17, page 3	30
n: slope				1				

Tisch Environmental, Inc.

P	1 L		T.
يليسا		distant.	111

Calibration Data for High Volume Sampler (TSP Sampler)

Location	ACL1	Calibration Date	19-Oct-18
Equipment no.	HVS014	Calibration Due Date	19-Dec-18

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient C	Condition			
Temperature, T	·	297.	2	Kelvin Pressure, P.			1017	mmHg
			Orifice	Transfer Sta	indard Informat	lion		
Equipment No.		Ori002		Slope, mc	2.12231	Intercept, b	c -0.0	6016
Last Calibration Date	ų	19-Jan-1	8		(Hx	P, / 1013.3 x 298	/Ta) 1/2	
Next Calibration Date		19-Jan-1	9			$m_c \times Q_{std} + b_c$	4. E	
				Calibratio	n of TSP			
Calibration	Calibration Manometer Reading		sading	9) _{std}	Continuous Flow	IC	
Point		H (inches of water)		(m ³ / min.)		Recorder, W	(W(P,/1013.3x298/T,) ¹⁰ /35.31	
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-ax	is
1	1.4	1.4	2.8	3.0	8194	37	37.12	10
2	2.2	2.2	4,4	1.0	0199	45	45.14	172
3	3.6	3.6	7.2	1.2	2968	54	54.17	66
4	4.6	4.6	9.2	1.4	4622	60	60.19	162
5	5.8	5.8	11.6	1.6	6384	65	65.21	26
By Linear Regression of Y o	xn X							
	Slope, m	0.00	34.3	2841	Inte	rcept, b =	9.6068	
Correlation C	cefficient*		0.9	8866	52 10			
Calibration	Accepted	=	Yes	/No**				
			-					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :

Calibrated by

Date

Ray Lee

19-Oct-18

Checked by

: Pualine Wong

Date

19-Oct-18

Pilot Testing Limited Room B12, Block B, 5/F, Tonic Industrial Centre, 19 Lam Hing Street, Kowloon Bay, Kowloon. Tel: (852) 2527 6691 email: info@pilot-testing.com

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL1	Calbration Date	:	19-Dec-18
Equipment no.	: _	HVS014	Calbration Due Date	: _	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		29	93	Kelvin	Pressure,	Pa		1020	mmHg		
Orifice Transfer Standard Information											
Equipment No.		Ori31	66	Slope, m _c	2.122	:31	Intercept, I	bc	-0.06016		
Last Calibration Date		24-Jan	ı-18		(H x F	P _a / 10	13.3 x 298	/T _a)	1/2		
Next Calibration Date		24-Jan	i-19		=	m _c	x Q _{std} + b	c			
Calibration of TSP											
Calibration	Ma	anometer	Reading	Q	std	Contir	nuous Flow		IC		
Point	Н	(inches o	of water)	(m ³ /	(m ³ / min.)		corder, W	(W(P _a /10	013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-a	ixis	((CFM)		Y-axis		
1	1.4	1.4	2.8	0.82	261	37		37.4375			
2	2.3	2.3	4.6	1.0	509		44		44.5203		
3	3.6	3.6	7.2	1.3	076		52		52.6149		
4	4.6	4.6	9.2	1.4	744		58		58.6858		
5	6.0	6.0	12.0	1.6	799		63		63.7450		
By Linear Regression of Y o	on X										
Slope, m = 31.3445 Intercept, b = 11.6628											
Correlation Coe	əfficient*	=	0.99) 89	_						
Calibration A	ccepted	=	Yes/	No**	_						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks	:
---------	---

Calibrated by	:	Henry Lau	Checked by	Chan Ka Chun
Date	:	19-Dec-18	Date	19-Dec-18

PILOT				
TESTING	Calibration	Data	for	High

Volume Sampler (TSP Sampler)

L	o	Ċ	a	ŧ	o	п.

1

ACL2a

Calibration Date

19-Oct-18 Dec-18

Equipment no.

HVS011

	_	
Calibration Due Date	53	19-
	_	

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition		
Temperature, T _a		297	2	Kelvin	Pressure, P.		1017 mmHg
			Orifice	Transfer Sta	andard Informatic	n	
Equipment No.		Orio02	EQ. ()	Slope, m _e	2.12231	Intercept, bo	-0.06016
Last Calibration Date		19-Jan-1	18		(HxI	P, / 1013.3 x 298	(T a) 1/2
Next Calibration Date		19-Jan-1	19			$m_c \times Q_{stat} + b_c$	
				Calibratio	in of TSP		
Calibration	Ma	nometer R	eading	c	2	Continuous Flow	IC
Point	H (inches of water)			(m ⁸	/ min.)	Recorder, W	(W)Pv1013.3x298/Tu) ¹⁰ (35.31)
	(up)	(down)	(difference)	x-	axis	(CFM)	Y-axis
1	1.5	1.5	3.0	0.0	9471	26	26.0850
2	2,4	2.4	4.8	1.6	0640	35	35.1145
3	3.9	3.9	7.8	13	3486	45	45.1472
4	5.2	5.2	10.4	1.1	5528	52	52.1700
5	6.4	6.4	12.8	3.3	7196	58	58.1897
By Linear Regression of Y or	×٦						
	Slope, m	=	36.	4000	Interce	apt, b =	4.2134
Correlation Co	pefficient*	-	0.9	994			
Calibration	Accepted		Yes	/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been Remarks :

re-as	signed from	EL111 to HVS011 with respect to the up	date in quality management system.		
Calibrated by	80	Ray Lee	Checked by		Pualine Wong
Date	ŧ	19-Oct-18	Date	E.	19-Oct-18

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	ACL2a	Calbration Date :	19-Dec-18
Equipment no.	:	HVS011	Calbration Due Date :	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		293	3	Kelvin	Pressure,	Pa		1020	mmHg
			Orifice Tra	ansfer Stand	lard Inform	ation			
Equipment No.		Ori316	6	Slope, m _c	2.122	231	Intercept, I	bc	-0.06016
Last Calibration Date		24-Jan-1	18		(H x I	P _a / 101	3.3 x 298	$/T_{a})^{1/2}$	2
Next Calibration Date		24-Jan-1	19		=	m _c >	x Q _{std} + b	с	
	Calibration of TSP								
Calibration	Manometer Reading		Q,	std	Continu	uous Flow		IC	
Point	H (ir	nches of	water)	(m ³ /	min.)	Reco	order, W	(W(P _a /1013	3.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	difference	e X-a	xis	(C	CFM)		Y-axis
1	1.3	1.3	2.6	0.79	971		34	:	34.4020
2	2.4	2.4	4.8	1.07	729		41		41.4848
3	3.5	3.5	7.0	1.28	397		50		50.5912
4	4.5	4.5	9.0	1.45	586		57		57.6740
5	5.8	5.8	11.6	1.65	521		60		60.7095
By Linear Regression of Y c	on X								
٤	Slope, m	=	32	2.7710	Inte	ercept, b =		7.8748	
Correlation Coe	əfficient*	=	0.	.9912	_				
Calibration A	ccepted	=	Ye	s/ No **	-				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	Chan Ka Chun
Date	:	19-Dec-18	Date	19-Dec-18

CERTIFICATE OF CALIBRATION

18CA0510 04		Page	1	of	2
Sound Level Meter (Larson Davis LxT1 0004796 -	(Type 1)	Microphone PCB 377B02 155507		PCB	
Lam Geotechnics Lt - - 10-May-2018	d				
11-May-2018					
sed in the calibra	tion				
Model: B&K 4226 DS 360	Serial No. 2288444 61227	Expiry Date: 08-Sep-2018 23-Apr-2019			
21 ± 1 °C 50 ± 10 % 1005 ± 5 hPa					
	Larson Davis LxT1 0004796 - - Lam Geotechnics Lt - - 10-May-2018 11-May-2018 11-May-2018 sed in the calibra Model: B&K 4226 DS 360 21 ± 1 °C 50 ± 10 %	LxT1 0004796 - Lam Geotechnics Ltd - - 10-May-2018 11-May-2018 Sed in the calibration Model: Serial No. B&K 4226 2288444 DS 360 61227	Larson Davis PCB LxT1 377B02 0004796 155507 - - Lam Geotechnics Ltd - - - 10-May-2018 - 11-May-2018 - seed in the calibration - Model: Serial No. Expiry Date: B&K 4226 2288444 08-Sep-2018 DS 360 61227 23-Apr-2019 21 ± 1 °C 50 ± 10 % -	Larson Davis PCB LxT1 377B02 0004796 155507 - - Lam Geotechnics Ltd - - - 10-May-2018 - 11-May-2018 - sed in the calibration - Model: Serial No. Expiry Date: B&K 4226 2288444 08-Sep-2018 DS 360 61227 23-Apr-2019 21 ± 1 °C 50 ± 10 % -	Larson Davis PCB PCB LxT1 377B02 PRMLx1 0004796 155507 042621 - - - Lam Geotechnics Ltd - - - - - 10-May-2018 - - sed in the calibration - - Model: Serial No. Expiry Date: Traceab B&K 4226 2288444 08-Sep-2018 CIGISMER DS 360 61227 23-Apr-2019 CEPREI 21 ± 1 °C 50 ± 10 % - -

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

					综合试验
Approved Signatory:	- Alt	Date:	11-May-2018	Company Chop:	国有限公司言
	Feng Junqi				\$705 * 011 F

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co. Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

ENGIN

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0510 04

2 of

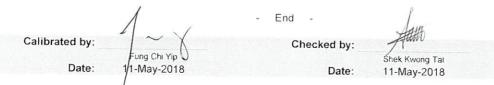
-

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	L .L
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
823 - 51	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA0907 02		Page	1	of	2
Item tested						
Description:	Sound Level Mete	er (Type 1)	Microphone		Preamp	
Manufacturer:	B & K		B&K		B&K	
Type/Model No.:	2250-L		4950		ZC0032	
Serial/Equipment No.:	3006790		2827240		21213	
Adaptors used:	-		-		-	
Item submitted by						
Customer Name:	Lam Geotechnics	Limited				
Address of Customer:						
Request No.:	-					
Date of receipt:	07-Sep-2018					
Date of test:	10-Sep-2018					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:		Traceab	le to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019		CIGISME	С
Signal generator	DS 360	33873	24-Apr-2019		CEPREI	
Signal generator	DS 360	61227	23-Apr-2019		CEPREI	
Ambient conditions						
Temperature:	21 ± 1 °C					
Relative humidity:	50 ± 10 %					
Air pressure:	1005 ± 5 hPa					
Test sussifientions						

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

nq

Actual Measurement data are documented on worksheets.

Approved Signatory: Feng

10-Sep-2018 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co. Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 18CA0907 02 2 Page 2 of

1, **Electrical Tests**

香

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Calf concreted noise	٥	Pass	0.3	
Self-generated noise	A			
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
0 0	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

			Expanded	Coverage	
Test:	Subtest	Status	Uncertanity (dB)	Factor	
Acoustic response	Weighting A at 125 Hz	Pass	0.3		
	Weighting A at 8000 Hz	Pass	0.5		

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End _ Calibrated by: Checked by: Fung Chi Yip Shek Kwong Tat 10-Sep-2018 Date: 10-Sep-2018 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co Ltd

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	del Number CAL200		Procedure Number D0001.8		8385		
Serial Number	13098		Technician	Scott Montgomery		mery	
Test Results	Pass		Calibration Date	29 Oct 2018			
Initial Condition	Inopera	and a	Calibration Due				
	mopera	sole	Temperature	23	*C	± 0.3 °C	
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH	
			Static Pressure	101.2	kPa	±1 kPa	
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XM 200 CM 570	ne refere	nce mic	crophone's open	
Compliance Stan	dards	Compliant to Manufacturer Specificat IEC 60942:2017	ions per D0001.8190 and the ANSI S1.40-2006	following	standa	ards:	

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used	1	
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM

1/2 Page

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

Information supplied	by customer:		
CONTACT:	MR. SAM LAM	WORK ORDER:	HK1811147
CLIENT:	LAM GEOTECHNICS LIMITED		
DATE RECEIVED:	16/11/2018		
DATE OF ISSUE:	19/11/2018		
ADDRESS:	11/F, CENTRE POINT, 181-185, G	LOUCESTER ROAL	D,
	WANCHAI, HONG KONG		
PROJECT:	and the second		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1403009	
Equipment No.:	200	
Date of Calibration:	19/11/2018	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager

Issue Date:

19/11/2018

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

Address: No.B12, 5th Floor, Block B, Tonic Industrial Centre, No.19 Lam Hing Street, Kowloon Bay, Kowloon Phone +852 2527 6691 | Email info@pilot-testing.com

PILOT

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

WORK ORDER:	HK1811147
DATE OF ISSUE:	19/11/2018
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1403009	
Equipment No.:	444	
Date of Calibration:	19/11/2018	
Date of next Calibation:	19/02/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.98	-0.5%	
10	10.12	1.2%	
40	43.50	8.8%	
100	103.00	3.0%	
400	396	-1.0%	
1000	925	-7.5%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

Information supplies	d by customer:	
CONTACT:	MR. SAM LAM	WORK ORDER: HK1811031
CLIENT:	LAM GEOTECHNICS I	IMITED
DATE RECEIVED:	11/10/2018	
DATE OF ISSUE:	12/10/2018	
ADDRESS:	11/F, CENTRE POINT,	181-185, GLOUCESTER ROAD,
	WANCHAI, HONG KO	NG
PROJECT:		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidity Meter	
Brand Name:	PCE Instruments	
Model No.:	PCE-TUM 20	
Serial No.:	Q942542	
Equipment No.:		
Date of Calibration:	12/10/2018	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager Issue Date:

12/10/2018

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

WORK ORDER:	HK1811031
DATE OF ISSUE:	12/10/2018
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidity Meter	
Brand Name:	PCE Instruments	
Model No.:	PCE-TUM 20	
Serial No.:	Q942542	
Equipment No.:	***	
Date of Calibration:	12/10/2018	
Date of next Calibation:	12/01/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00	***	
10	10.50	5.0%	
20	20.50	2.5%	
40	41.48	3.7%	
100	99	-1.0%	
400	401	0.3%	
800	788	-1.5%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from Pilot Testing Limited.

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No.	: HK1811019
Project Name Date of Issue	EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT 11/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	: HK1811019
Test Item No.	: HK1811019-01
Test Item Details	
Test Item Description	Sonde
Manufacturer	YSI
Model No.	: Professional Plus
Serial No.	14K100322
Performance Method	: Checked according to in-house method CAL005
	(References: Temperature (Section 6 of International Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)
	, Dissolved oxygen (APHA 19e 4500-O,C))
Test Item Receipt Date	9/10/2018
Test Item Calibration Date	: 10/10/2018

Notes : 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, USA
- 6. DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
- 7. Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Ms. Wong Po Yan, Pauline (Assistant Laboratory Manager) Issue Date:

11/10/2018

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1811019 DATE OF ISSUE: 11/10/2018 CLIENT: LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	<u>.</u>
Model No.	Professional Plus	
Serial No.	14K100322	
Date of Calibration	10-Oct-18	
Date of next Calibation	10-Jan-19	1.

Parameters:

Temperature (Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (*C)	Display Reading (°C)	Deviation (°C)
8.8	8.8	0.0
15.3	15.2	-0.1
25.4	25.3	-0.1
	Tolerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	4.01	3.98	-0.03
7.0	6.99	7.02	0.03
10.0	10.02	10.03	0.01
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.3	12.3	-0.16
0.2000	24.0	23.9	-0.33
0.5000	57.1	57.2	0.18
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
7.00	7.01	0.01
6.41	6.43	0.02
4.46	4.41	-0.05
	Tolerance Limit	±0.20

Remarks:

(1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

- End of Report -

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No.	: HK1811027
Project Name	EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT
Date of Issue	: 11/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	HK1811027
Test Item No.	HK1811027-01
Test Item Details	
Test Item Description	: Sonde
Manufacturer	: YSI
Model No.	Professional Plus
Serial No.	: 14M100277
Performance Method	Checked according to in-house method CAL005
	(References: Temperature (Section 6 of Intermational Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)
	, Dissolved oxygen (APHA 19e 4500-O.C))
Test Item Receipt Date	: 11/10/2018
Test Item Calibration Date	: 11/10/2018

Notes: 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF, USA
- 6. DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
- Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Issue Date:

11/10/2018

Ms. Wong Po Yan, Pauline (Assistant Laboratory Manager)

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1811027 DATE OF ISSUE: 11/10/2018 CLIENT: LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	
Model No.	Professional Plus	
Serial No.	14M100277	
Date of Calibration	11-Oct-18	
Date of next Calibation	11-Jan-19	

Parameters:

Temperature (Method Ref: Section 6 of Intermational Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (*C)	Display Reading (°C)	Deviation (°C)
7.0	6.9	-0.1
15.7	16.0	0.4
24.7	24.5	-0.2
Г	olerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	3.99	3.98	-0.01
7.0	7.01	7.08	0.07
10.0	10.02	10.06	0.04
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.6	12.6	-0.55
0.2000	23.6	23.6	-0.08
0.5000	55.1	55.7	1.09
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
6.97	6.92	-0.05
5.15	5.10	-0.05
3.97	4.08	0.11
	Tolerance Limit	±0.20

Remarks:

s: (1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

- End of Report -